If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+5w-250=0
a = 1; b = 5; c = -250;
Δ = b2-4ac
Δ = 52-4·1·(-250)
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{41}}{2*1}=\frac{-5-5\sqrt{41}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{41}}{2*1}=\frac{-5+5\sqrt{41}}{2} $
| 4.9-6.1u=-3.2-3.8 | | 4(-2x-7)+8=-(-6+12x)+15x-20 | | 3(3x+2)+3x=28.5 | | (x+12)^2-8=92 | | b–1=3 | | 9t-2=3t+19 | | x=27+9 | | 2(50x-15)/5-1/4=3/2x+9 | | 2/3x+8=31/2-5x | | 2(n-2)=4n-2 | | -3(5x-3)+6=45 | | 1/3*t^2-36=0 | | 2(5x-2)=12 | | 26=703(x)÷5184 | | 6x-9=2x+18 | | 7/2x+20=90 | | X/2+x/3=20/3 | | 8(x+10)=7(x+15) | | -(5x-12)+5/6-12x=20-4x | | 12323131x2312331=123123x121313 | | -0.3(p+1)=0.16 | | 8/y-5=7 | | 23x³−1=1 | | 7v+2v−4v=10 | | -(5x-12)+5/6•12x=20-4x | | 2+5=-6+x | | 19g-11g=16 | | 3b^2-75=0 | | 2x+7-4x=-18 | | 3n2+15=42 | | 13(x+10)=12(x+4) | | 6x^2+7=385 |